Lorentz Meets Lipschitz

نویسندگان

چکیده

We show that maximal causal curves for a Lipschitz continuous Lorentzian metric admit $\mathcal{C}^{1,1}$-parametrization and they solve the geodesic equation in sense of Filippov this parametrization. Our proof shows are either everywhere lightlike or timelike. Furthermore, demonstrates an $\alpha$-H\"older $\mathcal{C}^{1,\frac{\alpha}{4}}$-parametrization.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lorentz meets Fano in spectral line shapes: a universal phase and its laser control.

Symmetric Lorentzian and asymmetric Fano line shapes are fundamental spectroscopic signatures that quantify the structural and dynamical properties of nuclei, atoms, molecules, and solids. This study introduces a universal temporal-phase formalism, mapping the Fano asymmetry parameter q to a phase φ of the time-dependent dipole response function. The formalism is confirmed experimentally by las...

متن کامل

Lipschitz Bandits without the Lipschitz Constant

We consider the setting of stochastic bandit problems with a continuum of arms indexed by [0, 1]. We first point out that the strategies considered so far in the literature only provided theoretical guarantees of the form: given some tuning parameters, the regret is small with respect to a class of environments that depends on these parameters. This is however not the right perspective, as it i...

متن کامل

Simplicial Lipschitz optimization without the Lipschitz constant

In this paper we propose a new simplicial partition-based deterministic algorithm for global optimization of Lipschitz-continuous functions without requiring any knowledge of the Lipschitz constant. Our algorithm is motivated by the well-known Direct algorithm which evaluates the objective function on a set of points that tries to cover the most promising subregions of the feasible region. Almo...

متن کامل

Lipschitz Games

The Lipschitz constant of a finite normal–form game is the maximal change in some player's payoff when a single opponent changes his strategy. We prove that games with small Lipschitz constant admit pure ǫ-equilibria, and pinpoint the maximal Lipschitz constant that is sufficient to imply existence of pure ǫ-equilibrium as a function of the number of players in the game and the number of strate...

متن کامل

Lipschitz Percolation

We prove the existence of a (random) Lipschitz function F : Z → Z such that, for every x ∈ Z, the site (x, F (x)) is open in a site percolation process on Z. The Lipschitz constant may be taken to be 1 when the parameter p of the percolation model is sufficiently close to 1.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Theoretical and Mathematical Physics

سال: 2021

ISSN: ['1095-0753', '1095-0761']

DOI: https://doi.org/10.4310/atmp.2021.v25.n8.a4